
A Study of Regression Test Selection in Continuous

Integration Environments

Ting Wang, Tingting Yu

Department of Computer Science

University of Kentucky, Lexington, KY, 40506, USA

twa222@uky.edu, tyu@cs.uky.edu

Abstract—Continuous integration (CI) systems perform the
automated build, test execution, and delivery of the software.
CI can provide fast feedback on software changes, minimizing
the time and effort required in each iteration. In the meantime,
it is important to ensure that enough testing is performed prior
to code submission to avoid breaking builds. Recent approaches
have been proposed to improve the cost-effectiveness of regression
testing through techniques such as regression test selection (RTS).
These approaches target at CI environments because traditional
RTS techniques often use code instrumentation or very fine-
grained dependency analysis, which may not be able to handle
rapid changes. In this paper, we study in-depth the usage of
RTS in CI environments for different open-source projects.
We analyze 918 open-source projects using CI in GitHub to
understand 1) under what conditions RTS is needed, and 2) how
to balance the trade-offs between granularity levels to perform
cost-effective RTS. The findings of this study can aid practitioners
and researchers to develop more advanced RTS techniques for
being adapted to CI environments.

Keywords-regression testing; test case selection; continuous
integration.

I. INTRODUCTION

Continuous integration (CI) systems (e.g., Jenkins, Travis)

are widely used in practice [8] to handle rapid software

changes. When changes are made to projects, CI automatically

runs regression tests to ensure that the changes did not break

any working functionality. A survey [8] on 423 developers

found that 70% of developers report that using CI helps

them to catch bugs earlier and make them less worried about

breaking the build. In the meantime, it is also critical to ensure

CI testing is fast – it should run the “just-right” set of test cases

to quickly detect bugs before the next change occurs.

Regression test selection (RTS) is a promising approach

to speed up regression testing by selecting test cases that

are important to execute [4], [17], [15], [12], [26]. While

many techniques have been proposed to improve the cost-

effectiveness of RTS, they are difficult to be adapted in CI

environments. This is because traditional techniques tend to

rely on code instrumentation and computation of fine-grained

(e.g., statements, basic blocks, or methods) dependencies,

which often require significant analysis time. However, in CI

environments, testing requests arrive at frequent intervals, in

which changes may have already occurred before the regres-

sion tests are selected and executed. For example, Hadoop

2.5.0 can experience up to 86 commits per day. Given the

16,837 methods and 44,552 tests, it is impossible to calculate

dependencies and perform regression testing for each commit

by tracking dependencies at the method-level.

On the other hand, the coarse-granularity technique is

computationally efficient. For example, large organizations

such as Google TAP often use very coarse-grained depen-

dencies (e.g., module-level) to perform fast test selection [2].

However, coarse-grained dependencies can be imprecise such

that a change in a module may result in selecting all tests.

For example, Netflix project depends on an Inter Process

Communication library – Ribbon. If Ribbon code changes, all

tests for both Netflix and Ribbon will be run. While the coarse-

granularity technique is computationally efficient, it may end

up wasting time running a large number of irrelevant test

cases for a small change. Therefore, the key trade-off between

finer and coarser granularity is that finer granularity requires

more time for tracking dependencies but can provide more

precise results (i.e., selects a smaller number of more precise

regression tests).

We believe that an explorative study on open source projects

to quantitatively explore to what extent RTS is needed and

how we balance the precision and cost of testing, can guide

the design of, and improve techniques for addressing RTS

in CI environments. A natural question to ask is whether

sophisticated RTS is needed in CI. If change frequency is

low in most the open source projects, then developers may

use traditional RTS or coarse-grained dependency analysis

techniques to select test cases because there will be enough

time to perform analysis and execute a large number of test

cases. On the other hand, if changes happen frequently, it

is worth exploring cost-effective RTS techniques that can

minimize the number of test cases being selected and reduce

the number of analysis time.

In this paper, we perform an in-depth study and analyze

7,018,512 commits on 918 open-source projects using CI. We

aim to uncover and quantify to which extend RTS is needed

in open source projects. Specifically, we analyze the commit

frequencies of all 918 projects to understand the speed of

changes and how it can affect the efficiency of RTS. We

also analyze the percentage of source files that are changed

across commits to examine if analysis time should be spent

a particular set of files. In addition, we use two static RTS

techniques at different granularity levels to evaluate their cost-

effectiveness compared to the ReTestAll (i.e., exercising all

test cases).

135

2018 IEEE 29th International Symposium on Software Reliability Engineering

2332-6549/18/$31.00 ©2018 IEEE
DOI 10.1109/ISSRE.2018.00024

The main findings of our study are as follows:

• A majority of commits (60%) happen in more than 10-

minute time intervals. The results imply that if the total

testing time is less than 10 minutes, RTS is not needed

for 60% of commits.

• Code changes tend to concentrate on a small percentage

(8.6%) of source files for the short commits whose

intervals is less than 10 minutes. The results imply that

in the presence of frequent changes (i.e., less than 10-

minute time interval), RTS can focus on a small set of

source files to reduce the cost of dependency analysis.

• A majority (62.2%) of Java projects whose average

testing times do not exceed 25% of their average commit

time intervals. The results imply that RTS may not be

needed over the entire development cycle.

• On a majority (97.3%) of Java projects, static RTS at

method-level performs much more poorly than ReTestAll.

On the other hand, static RTS at the class-level saves

more time than ReTestAll on more than half (56.8%) of

Java projects. The results imply that method-level RTS,

although selects fewer test cases, is not a time-efficient

choice for project in CI environments.

We see this study as a way to share with researchers and

practitioners the RTS issues that CI brings and potentially

guide the development of practical RTS techniques in CI

environments. The rest of the paper is organized as follows.

We first present background and related work in Section II. We

then describe our research questions in Section III and study

setup in Section IV. Our results are demonstrated in Section

V, followed by discussions and threats to validity in Section

VI, and end with conclusions in Section VII.

II. BACKGROUND AND RELATED WORK

A. Regression Testing

Let P be a program, let P
′ be a modified version of

P , and let T be a test suite for P . Regression testing is

concerned with validating P
′. To facilitate this, engineers

often begin by reusing T , but reusing all of T (the retest-all

approach) can be inordinately expensive. Thus, a wide variety

of approaches have been developed for rendering the reuse

more cost-effective via regression test selection and test case

prioritization ([24] provides a recent survey).

Regression test selection (RTS) techniques attempt to select,

from test suite T , a subset T
′ that contains test cases that

are important to re-run, and omit test cases that are not

as important. Previous research has shown [16] that when

certain conditions are met, RTS is safe; i.e., it cannot omit

test cases which, if executed on P
′, would reveal faults in

P
′ due to code modifications. Test case prioritization (TCP)

techniques attempt to reorder the test cases in T to reach the

testing objectives earlier and the potential objectives involved

in revealing faults [18].

A key insight behind the use of regression testing techniques

is that certain testing-related tasks such as collecting coverage

information can be performed in the “preliminary period” of

A

C

B

T1

D

E

T2

T3

D

E

Fig. 1: Static regression test selection.

testing, before the changes to a new version are completed.

This insight, however, only applies when there are the suffi-

ciently long preliminary periods, and which is typically not the

case in CI environments. In this work, we focus on regression

test selection (RTS), which is orthogonal to TCP and can be

combined for added savings.

B. Regression Test Selection

Prior research on RTS can be broadly classified into dy-

namic and static techniques [11]. Dynamic RTS often requires

instrumenting the program to collect the runtime informa-

tion [6], [25], [5], which could limit its applicability in

practice.

In contrast, static RTS techniques [1], [10], [19] rely

on program analysis to infer dependencies among program

entities (e.g., statements, methods, classes) to enable test

selection. Specifically, when a change c occurs, all entities that

transitively depend on c, denoted by D, are computed and tests

associated with D are selected. The dependency analysis can

be done at different granularity levels of program entities.

To illustrate, Figure 1 shows a method-level dependency

graph, where nodes A–E represent methods and T represent

test cases. The figure indicates that A, B, and C are dependent

on each other and are all dependent on D. The nodes E and D

belong to the same class file C1 and nodes A, B, and C exist

in the same class file C2. When performing a method-level

RTS, when E is changed, only T1 is selected. On the other

hand, a class-level RTS would select all test cases because C2

depends on C1 based on their method dependencies. However,

class-level dependency analysis is cheaper than method-level,

although more test cases can be selected.

Recent research has proposed to make regression testing

more cost-effective [6], [7] in modern software projects. For

example, Gligoric et al. [7] propose a class-level dynamic RTS

technique and their evaluation shows that it is more efficient

than finer-level dynamic RTS. However, their work focuses on

dynamic RTS, which is often impractical in CI environments

due to runtime overhead.

Legunsen et al [11] show that class-level static RTS substan-

tially outperforms method-level static RTS on 22 open-source

Java projects regardless of their development environments. In

contrast, we focus on software projects using CI and compare

the costs of static RTS techniques at different granularity

levels.

Elbaum et al. [5] create RTS techniques that use time

windows to track how recently test suites have been executed

136

and revealed failures. Their technique is history-based, which

may sacrifice both the safety (missing relevant tests) and the

precision (selecting irrelevant tests). In addition, the evaluation

focuses on specific software projects with frequent commits, in

which RTS is needed. We intend to study static RTS techniques

based on dependency analysis. In contrast, we study a wide

range of open source projects to better understand the change

frequency and its relationship to the use of RTS techniques.

C. Continuous Integration

There has been some research projects on studying software

development activities in CI environments. Hilton et al. [9]

study the usage of CI in open-source projects, such as to what

extent CI is adopted in software development. Legunsen et

al. [11] evaluate the performance benefits of static RTS tech-

niques and their safety in modern software projects. Memon

et al. [13] share their experience and results in RTS on Google

projects. Vasilescu et al. [23] study the productivity of CI

based on 246 GitHub projects. However, these studies focus

on specific RTS techniques and do not evaluate the extent

to which RTS is needed or quantify the factors affecting the

cost and effectiveness of RTS in a wide range of open source

projects.

III. RESEARCH QUESTIONS

CI encourages developers to break down their work into

small tasks because smaller and frequent commits help them

keep track of their progress and reduce debugging effort [3].

Miller [14] observed that on average, Microsoft developers

made code commits every day, whereas while off-shore devel-

opers committed less frequently. Zhao et al. [27] report that

after CI is introduced, the commit frequency is 78 commits

every day.

In the presence of frequent commits in CI, testing must

be automated and conducted cost-effectively to make sure

each commit would not break the build. RTS is used to

select test cases (often determined by dependency analysis)

that are most likely to be affected by the commits. Existing

research has shown that traditional RTS cannot be applied in

CI environment because it requires significant analysis time,

which cannot catch up with the speed of changes [5]. While

commit frequencies can be used to measure the extent of CI

usage, the degree to which RTS can be applied depends on

the arrival rates of commits or commit intervals (the time

between two consecutive commits). For example, if commits

(i.e., changes) happen frequently in short intervals, then cost-

effective RTS is needed. On the other hand, at a certain

development period (i.e., when the project is stable), when

commits happen in larger intervals, developers may just re-

execute all test cases to simplify the testing. Therefore, we

ask the following research question:

RQ1: What are the commit intervals across different projects?

A main concern about using fine-grained dependency anal-

ysis to select test cases is the expensive analysis time before

every testing. As the frequent commits tend to be small,

TABLE I: Types of configurations

Project C C++ Java JavaScript Python PHP Ruby Scala

918 60 55 77 217 183 124 180 22

they usually occur to some specific project files (i.e., finish

coding a Java class within a day by a few commits). In

this case, file/class-level dependency analysis may not be

needed for every single commit that attributes to the same

file/class. Therefore, we would like to know whether the

frequent changes tend to concentrate on certain classes/files or

in project written in specific languages. The following research

question is asked.

RQ2: How many project files are changed at different time

intervals and how are they related to different programming

languages?

When determining whether RTS is useful, it is important to

know the time cost for test execution. If a majority of commit

intervals are much shorter than the time of executing all test

cases, RTS may be necessary to reduce the cost of regression

testing and provide fast feedback for developers. Otherwise,

there may be no need to perform RTS for particular projects

or at certain development periods. Therefore, we are interested

in the following research question:

RQ3: To what extent is RTS needed compared to ReTestAll

method?

When RTS is needed, to determine which test cases to

select, one approach is to use dependency analysis to identify

test cases associated with the changed elements and other

elements affected by the changes. Different analysis techniques

differ in precision and overhead. Techniques that collect finer-

granularity dependencies may be more precise, selecting fewer

tests to be run, but can incur higher analysis overhead; in

contrast, techniques that collect coarser-granularity test de-

pendencies may be less precise but can have lower analysis

overhead [11]. Therefore, we would like to investigate the cost-

benefits of RTS techniques at different levels of granularity.

We ask the following research question:

RQ4: What are the cost-benefits of dependency analysis with

different levels of granularity in RTS?

IV. STUDY SETUP

A. Collecting Data Sets

The projects were from the datasets provided by Vasilescu

et al. [23], in which they used 924 GitHub projects to study the

productivity of CI. We cloned 918 projects of the list from the

official repository to our own GitHub repository for conducting

our experiments, because some projects were not publicly

available. We then sorted the projects by their programming

languages, including JavaScript, Python, Ruby, PHP, C, Java,

and Scala. For each project, we used GitHub APIs to collect

the following history information: project name, the primary

programming language, the reference number of all the com-

mits, the changed files at each commit, and the time stamp

of each commit. To gain a deep understanding about the

historical information of these projects, the data collected is

137

< 1
 s

ec

< 3
0

se
c

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in

0

20

40

60

80

Time Interval

C
o

m
m

it
s

 (
%

)

< 1 sec

< 30 sec

< 1 min

< 5 min

< 10 min

>= 10 min

Fig. 2: Percentage of commits at different time intervals

further processed by Python scripts. Table I lists the number

of projects under different programming languages.

To answer RQ3 and RQ4, we need to execute the programs

and perform program dependency analysis. We use Under-

stand [22], a commercial static analysis tool for Java to analyze

dependencies among methods and classes. Therefore, we need

to find projects that can 1) successfully compile under our

environment settings; 2) work with the program dependency

analysis tool. Therefore, 37 Java projects were selected. Next,

we need to simulate the real scenarios of developers’ commits.

We use “git log” to get the reference IDs of all commits of the

project history and time stamps of the commits. We selected a

sequence of 20 consecutive versions for each project. In total,

there are 7,018,512 commits. We then wrote a shell script

to automatically push the selected revisions to the repository

based on the commit IDs following their time order.

We use Jenkins CI [21], which is one of the most popular CI

servers, to setup our CI environment. To enable the repo-driven

trigger, we setup the webhook between GitHub and Jenkins.

Both can be found under the settings of each project repository.

Once each revision is committed to the repository, the test

case selection is triggered as one part plugin of the Jenkins CI

process. Once the test selection is being finished, Jenkins will

start the building and testing for the revisions. Since we wish

to study how in general code changes affect RTS, we consider

single changes. It would be worth exploring pushes, as the

reviewer suggest. The conclusions and implications would be

similar because push intervals are larger than commit intervals.

V. RESULTS

We now present our results for each of the four research

questions 1.

A. RQ1: Frequency of Commits

The first research question pertains to the productivity of

the project in order to help us understand to what extent RTS

is needed in CI environments. As discussed in Section I, CI

runs the integration of compile, build and test at each commit

of the software life cycle. If several authors are very active,

1Artifacts and experimental data are available at https://github.com/Ting007/

masterProject

TABLE II: Correlation coefficient between the number of total
commits and the percentage of commits

Interval <1 sec < 30 sec < 1 min < 5 min < 10 min > 10 min

Cor. Coe. 0.58 0.21 0.13 -0.14 0.18 -0.61

the commits often happen in a rushed fast wave, running a

complete testing of the whole project could be too expensive

and time consuming. It might be more practical and optimal to

select the most necessary test cases to run. On the other hand,

RTS may not be needed under the following situations: 1) the

project has only a few developers who are unlikely to make

changes concurrently; 2) the project is stable over certain time

periods in which fewer changes are made; 3) the project has

a small number of test cases. To better understand to what

extent RTS should be used in CI, we first study the frequency

of commits (the number of commits happening within some

certain time intervals) for different projects.

Due to the large number of commits, the results are repre-

sented by the percentage of commits instead of the actually

numeric numbers. Figure 2 shows the percentage of commits

over all projects distributed across different time intervals. The

results indicate that of all 7,018,512 commits, 6% of them

happened in less than one second, 30% happened in less than

5 minutes, and 60% happened in greater than 10 minutes.

Next we inspect the percentage of commits at each time

interval for projects with different total commits. Because

we would like to know if the total number of commits

would introduce some influence to the commit frequency.

For projects in the list, the total number of commits is not

evenly distributed. To eliminate the bias from the population of

projects, each column data is calculated based on 9-12 % of the

total projects. The bin sizes are chosen based on the number

of projects. Specifically, To avoid the bins being skewed,

they contain approximately the same number of projects. The

results are plotted in Figure 3. For example, the percentage

of commits happening within less than one second is in an

increasing trend (from 3.6% to 8.9 %), particularly for those

projects with a larger number of total commits(above 3500

commits). This indicates that projects tend to be more active

with short-time intervals (<1 sec). However, the trend is not

obvious for larger intervals (e.g., <30 sec, <1 min, < 5 min).

In fact, when the time interval goes greater than 10 minutes,

the percentage of longer commits (>= 10 min) is decreased

from an average of 66.4% to 55.4% as the number of total

commits are increased from 0 to 17500.

Table II shows the correlation coefficients between the

number of total commits and its percentage under different

time intervals. We use Pearson’s correlation coefficient [20].

The coefficient value of > 0.50 or <-0.50 are considered to be

strong, while values between -0.49 and -0.30 or between 0.30

and 0.49 are considered to be moderate and values between

-0.30 and 0.30 are considered to be weak. The results shows

that the correlation coefficients for < 1-second time interval

and >= 10-minute interval are strong, but in an opposite way.

This suggests that, for larger commit intervals, the percentage

of commits is decreased. It implies that RTS may not be

138

0-
12

50

12
50

-2
00

0

20
00

-2
50

0

25
00

-3
50

0

35
00

-5
00

0

50
00

-7
00

0

70
00

-1
00

00

10
00

0-
17

50
0

>17
50

0
0

5

10

15

20

Number of Total Commits

C
o

m
m

it
s

 (
%

)

< 1 sec

0-
12

50

12
50

-2
00

0

20
00

-2
50

0

25
00

-3
50

0

35
00

-5
00

0

50
00

-7
00

0

70
00

-1
00

00

10
00

0-
17

50
0

>17
50

0
0

2

4

6

8

Number of Total Commits

C
o

m
m

it
s

 (
%

)

<1 min

0-
12

50

12
50

-2
00

0

20
00

-2
50

0

25
00

-3
50

0

35
00

-5
00

0

50
00

-7
00

0

70
00

-1
00

00

10
00

0-
17

50
0

>17
50

0
0

5

10

15

< 10 min

Number of Total Commits

C
o

m
m

it
s

 (
%

)

0-
12

50

12
50

-2
00

0

20
00

-2
50

0

25
00

-3
50

0

35
00

-5
00

0

50
00

-7
00

0

70
00

-1
00

00

10
00

0-
17

50
0

>17
50

0
0

5

10

15

20

Number of Total Commits

C
o

m
m

it
s

 (
%

)

< 30 sec

0-
12

50

12
50

-2
00

0

20
00

-2
50

0

25
00

-3
50

0

35
00

-5
00

0

50
00

-7
00

0

70
00

-1
00

00

10
00

0-
17

50
0

>17
50

0
0

5

10

15

20

< 5 min

Number of Total Commits

C
o

m
m

it
s

 (
%

)

0-
12

50

12
50

-2
00

0

20
00

-2
50

0

25
00

-3
50

0

35
00

-5
00

0

50
00

-7
00

0

70
00

-1
00

00

10
00

0-
17

50
0

>17
50

0
0

20

40

60

80

>= 10 min

Number of Total Commits

C
o

m
m

it
s

 (
%

)

Fig. 3: Percentage of commits at different time intervals for
projects with different numbers of total commits

needed at larger commit intervals. As the number of total

commits grows with the project development (more than 3500

commits), there will be a higher rate of short time intervals

(< 1 sec).

RQ1: A majority of commits (60%) happen in more

than 10-minute time intervals. In other words, RTS is

useful for a majority of projects if the test execution

times exceed 10 minutes.

B. RQ2: File Changes

We would like to know the number of source files changed

at each commit. This information can help developers better

decide whether or not to skip a testing or to make a depen-

dency analysis. For example, if some consecutive commits

concentrate on a particular set of class files, there is no need

to perform dependency analysis for each of these commits

because the analysis would always output the same set of

affected files.

To eliminate the influence from different programming

languages, we first sorted all projects by the category of

different programming languages (C+, C, Java, JavaScript,

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

C++

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Java

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

PHP

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Ruby

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

C

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

JavaScript

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Python

<
1

se
c

<
30

 s
ec

<
1

m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0

20

40

60

80

100

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Scala

Fig. 4: Percentage of changed files per commit across different
time intervals

PHP, Python, Ruby, Scala). Figure 4 and Figure 5 represent

the data results of all projects classified by their programming

languages. Figure 4 focuses on the percentage of changed files

per commit at different time intervals. Figure 5 focuses on the

percentage of different types of changed files per commit.

Figure 4 indicates that the percentage of the changed files

increases with the time interval, especially for those > 5

min. This trend is consistent across different languages. For

example, for the projects mainly written in PHP, there are

only 1% changed files on average per commits for 1-second

interval, whereas up to 8% files are changed for 10-minute

interval. Comparing the number of changed files at the 1-

second interval to those at the 5-minute interval, the percentage

of changed files is almost 3 times for programs written in Java,

JS, Scala and C. This percentage is increased by a factor of

5 for programs written in PHP, Python and Ruby. The results

139

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

C+

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Java

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

PHP

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Ruby

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

C

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

JavaScript

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Python

Src

Test

Others

<
1

se
c

<
30

 s
ec

<
 1

 m
in

<
5

m
in

<
10

 m
in

>=
 1

0
m

in
0%

50%

100%

Commits Intervals

F
il
e
 P

e
rc

e
n

ta
g

e
 (

%
)

Scala

Src

Test

Others

Fig. 5: Percentage of changed files in different types across
different time intervals

are not surprising as the number of changes is expected to

increase if more time had been available between commits.

However, the percentage of changed files may not reflect

changes in actual source files that affect RTS. For example,

many changes happen in text files only involving readme

or configuration files. To further understand our results, we

calculated the percentage of changed files in terms of their

file types. Specifically, we classify programs files into source

files, test files, and other files. The changed test files/classes

are also supposed to execute for a new commit of source file.

Figure 5 shows the percentage of changed files in different

types. The average percentage of changed project source files

at each time interval is about 50% for programs written in

C+, C, Java, Ruby and Scala; 10–20% for programs written

in PHP and Python. The percentage of test files changed at

each time interval is about 20–40% for programs written in

Java, JavaScript, Scala. However, for projects written in C+,

C, PHP, Python, and Ruby, the percentage of changed test files

is small, only 10%.

Figure 5 also shows that the percentage of changed files in

different types does not vary much at different time intervals.

For programs written in the same language, the percentage

of each file type differs less than 10% across different time

intervals. Therefore, longer time intervals may not imply more

effort will be spent on the actual project coding.

The results also suggest that the percentage of file types

differs a lot among different languages. We conjecture the

reason is because many of the programming languages are

used for different purposes. For example, Ruby is a dynamic,

reflective, and object-oriented languages. JavaScript is a lan-

guage that does not include any I/O, such as networking,

storage or graphics. The primary application of PHP is the

implementation of web pages of dynamic content. Thereafter,

some projects written in programming languages, like Python,

only has 10–20% of files per commits are directly related to

the code and tests of the program. For some programs written

in Java or Scala, 80% of the files per commits are related to

the code and tests of the software.

RQ2: Changes tend to concentrate on a small percent-

age (8.6%) of files for short-time commit intervals.

This implies that dependency analysis may not be

needed at each commit in order to save the analysis

time of RTS. Moreover, the results imply that RTS

should take program languages into consideration —

programs written in C+, C, Java, JavaScript, Ruby, and

Scala have a higher probability of containing changed

source code than those written in Python, PHP and

JavaScript.

C. RQ3: Testing Times

RQ1 and RQ2 analyze the commit intervals and changed

files. In this research question, we would like to know if the

frequency of commits leaves enough time for the testing or

not. If the time between commits is enough for executing all

test cases, then no RTS is needed.

We collected runtime statistics for the studied projects,

including 1) compile time: the time spent on compiling the

project; 2) testing time: the time spent on exercising all

tests; 3) rapid revisions: the commits whose time intervals are

shorter than the testing time required for exercising all tests.

Figure 6 shows the compilation times and testing times from

the 37 Java projects. Our results indicate that the total build

time (compilation and testing) ranged from 8.2 seconds to 527

seconds, which is consistent with the findings by Hilton et

al. [9]. The average testing times range from 2.1 seconds to

2129 seconds across all 37 projects. However, on 30 projects,

the average testing times are less than 500 seconds. Recall that

RQ1 indicates that 60% of commits happen in time intervals

greater than 600 seconds. These results suggest that RTS may

not be needed in a majority of commits for most of the

projects.

We next counted the number of rapid revisions. Figure 7

shows the percentage of rapid revisions for the 37 Java

projects. The results indicate that 23 out (62.2%) of 37 projects

contain less than 25% rapid revisions. In other words, RTS is

needed for the 25% of the commits on these projects. For the

140

Fig. 6: Time of compilation and testing

Fig. 7: Percentage of rapid revisions when using ReTestAll

seven projects whose testing time is over 10 minutes, almost

100% of commits are rapid revisions.

RQ3: A majority (62.2%) of Java projects whose

average testing times do not exceed 25% of their

average commit intervals. The results imply that RTS

is only needed in a small percentage of time intervals

instead of every commit.

D. RQ4: Dependency Analysis

We analyze the cost-effectiveness of RTS techniques at

two granularity levels: class-level and method-level. We first

apply the class-level dependency analysis for each revision/-

commit. Among all 7,018,512 revisions, the selection ratio

of test classes varies between 0% and 56% of RetestAll

(i.e., executing all test cases). The time varies between 8%

and 265% (where over 100% is slowdown) of RetestAll. We

next apply the method-level dependency analysis for each

revision. Among all 7,018,512 revisions, the selection ratio

of test classes varies between 0% and 38% of RetestAll (i.e.,

executing all test cases). The time varies between 65% and

492% of RetestAll.

Figure 8 shows the percentage of rapid revisions for

RetestAll and the two RTS techniques. Among all 37 Java

projects, when applying the class-level RTS, the number of

rapid revisions is reduced in 16 projects, ranging from 2%

to 15%. On the other hand, when applying the method-level

RTS, the number of rapid revisions is reduced in only one

project and on the rest of the 36 projects, the the number

rapid revisions is increased from 0% to 298%.

141

Fig. 8: Percentage of rapid revisions when using ReTestAll, class-level dependency analysis, and method-level dependency analysis

RQ4: Class-level dependency analysis performs much

better than method-level dependency analysis and can

reduce the cost of RTS in 43.2% of the projects. On the

remaining 56.8% of the projects, the two static RTS

techniques do not show benefits in reducing the cost.

VI. DISCUSSION

A. Implications

CI is motivated as an integration technique to automate the

process of compilation, building and testing. One benefit of

CI testing is to guarantee the quality of code at every single

commit. To adapt regression testing in CI environments, the

testing times must catch up with the frequency of commits. In

our RQ1, however, we found that a majority (60%) of commits

are over 10 minutes. The findings can help developers make

testing decisions during software development. For example,

if the total test execution exceeds 10 minutes, RTS techniques

should be applied.

Our study assumes a sequential execution of the tests. While

it is not uncommon to execute CI pipeline runs (i.e., executing

tests in parallel), since one goal in our study is to compare

RTS and ReTestAll, we wish to give RTS more opportunities

because the longer the tests execute the more RTS is needed.

As the results suggest, even in the case of sequential test

execution, RTS is not needed in a majority of projects and

commits. In addition, machine resources for parallel execution

are difficult to control in the experiment and for others to

replicate.

Second, programming language is measured as a factor

influencing the changes of different file types, as shown in

RQ2. The results imply that projects written in C/C+, Java,

Ruby are in a higher demand of using RTS than projects

written in other languages.

Third, in RQ3, we found that testing times exceed the

commit intervals for less in less than 25% of commits for

a majority of Java projects. The results imply RTS is often

needed over a small portion of the software development cycle.

Therefore, adaptive RTS techniques might be developed to

selectively execute RTS for certain commits. For example,

when a new project feature is introduced in which more code

commits are expected, RTS can be applied to reduce the cost

of testing; otherwise, it would be more safe to execute more

test cases.

Fourth, RQ4 indicates that class-level RTS substantially

outperforms method-level RTS. However, the class-level RTS

still performs poorly in projects with short testing times (i.e.,

less than 500 seconds). The results imply that RTS techniques

based on dependency analysis may not be applicable to

projects with short testing times. Other techniques, such as

history-based RTS (e.g., selecting test cases based on the

number of faults revealed in the past) might be appropriate,

but subject to further studies.

B. Threats to Validity

The primary threat to external validity for this study involves

the representativeness of our subject programs. The data we

gathered comes from 918 projects deployed in Travis CI envi-

ronments. Other subjects and CI server may exhibit different

behaviors. However, we do reduce this threat to some extent

by using several varieties of well studied open source code

subjects for our study.

The primary threats to internal validity for this study involve

possible faults in the implementation of dependency analysis

in RTS. We controlled for this threat by extensively testing

our tools and verifying their results against a smaller program

for which we can manually determine the correct results.

The primary threat to construct validity involves the dataset

and metrics used in the study. To mitigate this threat, we

used open source projects from GitHub, which are publicly

available and well studied by existing research [23]. We have

also used well known metrics in our data analysis such as

the number of commits and correlation analysis, which are

142

straightforward to compute.

VII. CONCLUSIONS

We have performed an empirical study employing regression

test selection (RTS) in continuous integration (CI) environ-

ments. We have analyzed 7,018,512 commits on 918 open-

source projects from GitHub. Our study investigates several

research questions related to RTS, including frequency of com-

mits, how project files are changed across commits, to what

extent testing times exceed commit intervals, and the influence

of dependency analysis at different levels of granularity. The

study provides guidance for future research on RTS in CI

environments. In the future, we will extend our study on more

subject programs and propose techniques to improve the cost-

effectiveness of RTS.

ACKNOWLEDGMENTS

This research is supported in part by the NSF grant CCF-

1652149.

REFERENCES

[1] Linda Badri, Mourad Badri, and Daniel St-Yves. Supporting predictive
change impact analysis: a control call graph based technique. In 12th

Asia-Pacific Software Engineering Conference, pages 9–pp, 2005.
[2] Google Testing Blog. Testing at the speed and scale of google.

Website, 2011. https://testing.googleblog.com/2011/06/testing-at-speed-
and-scale-of-google.html.

[3] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous

integration: improving software quality and reducing risk. Pearson
Education, 2007.

[4] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test
case prioritization: A family of empirical studies. IEEE Transactions

on Software Engineering, 28(2):159–182, 2002.
[5] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for

improving regression testing in continuous integration development
environments. In Proceedings of the ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 235–245,
2014.

[6] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Ekstazi:
Lightweight test selection. In Proceedings of the 37th International

Conference on Software Engineering, pages 713–716, 2015.
[7] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical

regression test selection with dynamic file dependencies. In
Proceedings of the International Symposium on Software Testing and

Analysis, pages 211–222, 2015.
[8] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and

Danny Dig. Usage, costs, and benefits of continuous integration in
open-source projects. In IEEE/ACM International Conference on

Automated Software Engineering, pages 426–437, 2016.
[9] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and

Danny Dig. Usage, costs, and benefits of continuous integration in
open-source projects. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, ASE
2016, 2016.

[10] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi
Toyoshima. Class firewall, test order, and regression testing of
object-oriented programs. JOOP, 8(2):51–65, 1995.

[11] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming
Zhang, and Darko Marinov. An extensive study of static regression
test selection in modern software evolution. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, FSE 2016, pages 583–594, 2016.
[12] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg

Rothermel. A static approach to prioritizing junit test cases. IEEE

Transactions on Software Engineering, 38(6):1258–1275, 2012.
[13] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell,

Rob Siemborski, and John Micco. Taming google-scale continuous
testing. In 2017 IEEE/ACM 39th International Conference on Software

Engineering: Software Engineering in Practice Track (ICSE-SEIP),,
pages 233–242, 2017.

[14] Ade Miller. A hundred days of continuous integration. In Agile

Conference, pages 289–293, 2008.
[15] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling

regression testing to large software systems. In Proceedings of the

ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 241–251, 2004.

[16] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test
selection techniques. IEEE Transactions on Software Engineering,
22(8):529–551, 1996.

[17] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software Engineering

and Methodology, 6(2):173–210, 1997.
[18] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. Prioritizing

test cases for regression testing. IEEE Transactions on Software

Engineering, 27(10):102–112, 2001.
[19] Barbara G Ryder and Frank Tip. Change impact analysis for

object-oriented programs. In Proceedings of the 2001 ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering, pages 46–53, 2001.
[20] Philip Sedgwick. Pearson’s correlation coefficient. BMJ: British

Medical Journal (Online), 345, 2012.
[21] John Ferguson Smart. Jenkins: The Definitive Guide. O’Reilly Media,

Inc., 2011.
[22] SciTools.com, 2018. https://scitools.com.
[23] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and

Vladimir Filkov. Quality and productivity outcomes relating to
continuous integration in github. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, pages 805–816,
2015.

[24] Shin Yoo and Mark Harman. Regression testing minimization,
selection and prioritization: A survey. Journal of Software Testing,

Verification, and Reliability, 22(2):67–120, 2012.
[25] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. Localizing

failure-inducing program edits based on spectrum information. In 27th

IEEE International Conference on Software Maintenance, pages
23–32, 2011.

[26] Lingming Zhang, Ji Zhou, Dan Hao, Lu Zhang, and Hong Mei.
Prioritizing junit test cases in absence of coverage information. In
IEEE International Conference on Software Maintenance, pages
19–28, 2009.

[27] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir
Filkov, and Bogdan Vasilescu. The impact of continuous integration
on other software development practices: a large-scale empirical study.
In Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering, pages 60–71, 2017.

143

